Case based imprecision estimates for Bayes classifiers with the Bayesian bootstrap

Abstract

This article outlines a Bayesian bootstrap method for case based imprecision estimates in Bayes classification. We argue that this approach is an important complement to methods such as k-fold cross validation that are based on overall error rates. It is shown how case based imprecision estimates may be used to improve Bayes classifiers under asymmetrical loss functions. In addition, other approaches to making use of case based imprecision estimates are discussed, and illustrated on two real world data sets. Contrary to the common assumption, Bayesian bootstrap simulations indicate that the uncertainty associated with the output of a Bayes classifier is often far from normally distributed.

keywords: case based imprecision estimates, Bayes classifier, Bayesian bootstrap, naive Bayes


Case based imprecision estimates for Bayes classifiers with the Bayesian bootstrap Machine Learning, 2005, Volume 58, Number 1, Pages 79-94
(PDF)
Niklas Norén, Roland Orre
Last modified: Tue Apr 26 04:07:29 CEST 2005