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SUMMARY

Post-marketing drug safety data sets are often massive, and entail problems with heterogeneity and
selection bias. Nevertheless, quantitative methods have proven a very useful aid to help clinical experts
in screening for previously unknown associations in these data sets. The WHO international drug
safety database is the world’s largest data set of its kind with over 3 million reports on suspected
adverse drug reaction incidents. Since 1998, an exploratory data analysis method has been in routine
use to screen for quantitative associations in this data set. This method was originally based on
large sample approximations and limited to pairwise associations, but in this article we propose
more accurate credibility interval estimates and extend the method to allow for the analysis of more
complex quantitative associations. The accuracy of the proposed credibility intervals is evaluated
through comparison to precise Monte Carlo simulations. In addition, we propose a Mantel-Haenszel
type adjustment to control for suspected confounders. Copyright c© 2000 John Wiley & Sons, Ltd.

1. Introduction

Despite great efforts in investigating drug safety before new substances are introduced on the
market, some adverse drug reactions (ADR) are not detected until after drug launch. This
applies in particular to reactions that have low incidence, occur primarily in groups that tend
to be excluded from clinical trials (such as pregnant women or young children), are due to
drug interactions or have long times to onset [1]. Screening of spontaneous reports is one of
several tools for post-marketing drug safety surveillance [2, 3], and remains the main method
for generating hypotheses related to previously unknown adverse drug reactions [4, 5]. In
this context, international initiatives have the advantage of accumulating information from
all over the world, something which increases the potential for early detection of drug safety
problems [6]. At the same time, the massive data sets involved require quantitative methods
for efficient knowledge discovery.

The WHO Collaborating Centre for International Drug Monitoring in Uppsala, Sweden (also
known as the Uppsala Monitoring Centre or the UMC) holds the world’s largest database of
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spontaneous reports on suspected adverse drug reaction incidents. The first reports in this data
set date back to 1967, and as of November 2004, 75 countries from around the world forward
their ADR reports to the UMC. The database currently consists of over 3 million reports, with
more than 14,000 distinct drug substances and almost 2,000 distinct ADR terms. Out of the
over 20 million possible combinations of one of these drug substances with one of these ADR
terms, around 600,000 pairs occur together on at least one report in this data set.

In recent years, several methods for quantitative analysis of spontaneous reporting data
sets have been proposed — some Bayesian [7, 9] and others non-Bayesian [11, 12]. Unlike
earlier approaches [13, 14], the lack of readily accessible and reliable international usage data
has lead these methods to focus on associations within the data sets rather than on proper
rates of incidence. Instead of external data, the whole database of reported ADR incidents
is thus the reference against which each possible association is compared. Despite the biases
in this reference population and despite biases in reporting behaviour and problems with
data quality (e.g. the highly variable amount of information available on different reports and
the phenomenon of duplicate reports), these quantitative methods have proven a useful aid in
highlighting drug-ADR combinations for clinical review [15, 16]. One advantage with the study
of associations within the data set is that some biases (such as the relative over-reporting of
new drug substances) is automatically compensated for [12].

Let dependency derivation denote the screening for quantitative associations between events
in a large data set. An obvious difficulty with exploratory data analysis ventures is the multiple
comparisons problem: given the large number of possible associations that are evaluated
simultaneously, it is hard to attribute a degree of significance to the findings. In addition,
for drug safety data sets, even if significant quantitative associations between two events can
be identified, they could potentially be driven by confounding variables or reporting biases.
As a consequence, we use dependency derivation as a means not to draw final conclusions
about possible associations between events in the data set but to generate hypotheses. Any
suspicion raised through dependency derivation needs to be further evaluated and tested in
some follow-up procedure. In the routine screening of the WHO database for potential drug
safety problems, this follow-up procedure consists of clinical evaluation of the individual case
reports for each highlighted association, by an international panel of drug safety experts [6].

In screening the database, we are interested in both the estimated strengths of association
and the support in data; strong associations are more likely to be indicative of important
problems, but with very little support in data even strong quantitative associations are likely
to be spurious. The problem with the straightforward use of a test for association is that it may
tend to highlight weak associations with large data support [9]. On the other hand, raw strength
of association estimates are sensitive to random variation and thus vulnerable to spurious
associations. In fact, for these large and sparse data sets, even the use of classical confidence
intervals around traditional strength of association measures are insufficient to compensate
for a limited data support. As an illustration, consider a drug substance x for which in the
first quarter after marketing there were only two case reports in the WHO database. Even
for a common ADR term, with say 100,000 reports in total, a single observed report together
with this drug by far exceeds the expected number (0.07) and the 95% confidence interval
for the log-odds ratio ([0.60 6.14]) excludes 0 and thus indicates a quantitative association.
Consequently, if log-odds ratios with confidence intervals were used as the screening criterion,
single reports on a particular ADR would suffice to highlight new drugs for clinical review.

Bayesian dependency derivation methods can be used to provide a reasonable balance
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EXTENDING THE METHODS USED TO SCREEN THE WHO DRUG SAFETY DATABASE 3

between strength of association and support in data [7, 9]. Bayesian inference is sometimes
criticised on account of the explicit incorporation of prior assumptions in the analysis, but in
dependency derivation this is the greatest advantage over classical inference. The conservative
prior distribution (based on the á priori assumption of mutual independence between any two
events) moderates the strength of association estimates toward the baseline assumption of no
association (especially at low counts) and thereby reduces the risk of highlighting spurious
associations.

Since 1998, a Bayesian dependency derivation method has been in routine use to rank
quantitative associations between drug substances and ADR terms in the WHO database [7, 8].
The use of this method to highlight drug-ADR combinations for clinical review has been
thoroughly tested [15] and integrated into the overall signal detection strategy at the
UMC [16, 17, 18, 19]. Several associations first highlighted with this approach have been
published in the medical literature [20, 21]. The algorithmic framework used is referred
to as the Bayesian Confidence Propagation Neural Network (BCPNN). The BCPNN is a
statistical neural network where the nodes correspond to different events and the weights
between nodes are proportional to the strength of association between different events. The
BCPNN can be used for complex tasks such as classification and unsupervised pattern
recognition [22, 23, 24, 25, 26], but for the purpose of dependency derivation, only the weights
between nodes of the network (referred to as Information Components or IC values) are of
interest. These can be estimated directly from data, so for transparency we shall refer to the
use of the BCPNN for Bayesian dependency derivation as IC analysis throughout this article.

In this article, we propose more accurate credibility interval estimates for the prior/posterior
distribution of the IC that do not rely on large sample theory. We argue in favour of using the
mode as the central IC estimate and show how it can be accurately estimated. In addition,
we propose a generalisation of the IC to higher order associations in order to screen for ADR
risk factors. We also introduce a Mantel-Haenszel type of adjustment for the IC in order to
control for potential confounders in heterogeneous data sets.

2. IC analysis for pairwise dependency derivation

Denote by ICxy the Information Component between events x and y for variables X and
Y respectively. The IC is defined as the base 2 logarithm of an observed-to-expected ratio
for the joint probability of the two events, where the expected value is calculated under the
assumption of mutual independence [7, 8]:

ICxy = log2

P (x, y)

P (x)P (y)
(1)

A positive IC value indicates that the two events co-occur more frequently than expected under
the assumption of independence, and a negative IC value indicates that they co-occur more
rarely. The IC is a function of the unknown probabilities P (x, y), P (x) and P (y), and Bayesian
inference is used to estimate the IC value. For convenience, a Dirichlet prior distribution (that
is conjugate to the multinomial distribution of data) is used for the probability parameters,
since this makes closed form expressions for the posterior distributions of P (x, y), P (x) and
P (y) readily available. No such closed form expression is known for the posterior distribution
of the IC itself, but in recent work, the use of Monte Carlo simulation based on the closed
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form expressions for P (x, y), P (x) and P (y), has been effective in learning more about the
shape of the posterior IC distribution [27]. We use this approach to evaluate the accuracy of
the approximations proposed in this article.

To simplify the annotation: with respect to the presence or absence of two events x and y,
denote by p11, p1· and p·1 the probability parameters for P (x, y), P (x) and P (y), respectively.
Similarly, denote by n11, n1· and n·1 the corresponding numbers of observations in the data
set. In addition, denote by n10 the number of cases where X = x but Y 6= y, by n01 the
number of cases where X 6= x but Y = y, and by n00 the number of cases where both X 6= x
and Y 6= y. Denote by p10, p01 and p00 the corresponding probabilities.

In our data model, the observed counts n11, n10, n01 and n00 are assumed to follow a
Mn(p11, p10, p01, p00, n··) distribution. With a Di(α11, α10, α01, α00) prior distribution for p11,
p10, p01 and p00, it is a standard result from Bayesian statistics that the corresponding posterior
distribution is Di(γ11, γ10, γ01, γ00), where γij = αij + nij (in an abstract sense, the hyper
parameters αij can be thought of as assumed prior observations) [28].

In this model, the marginal distributions of p11, p10, p01 and p00 are beta. The same is true
for p1· = p11 + p10 and p·1 = p11 + p01. Specifically:

p11 ∼ Be(γ11, γ10 + γ01 + γ00)

p1· ∼ Be(γ11 + γ10, γ01 + γ00)

p·1 ∼ Be(γ11 + γ01, γ10 + γ00) (2)

However, since p11, p1· and p·1 are not independent (p1· = p11 + p10 and p·1 = p11 + p01), it
will sometimes be a coarse approximation to consider the marginal distributions separately as
has been done earlier [7, 8], and we will in this article base our analyses on the full Dirichlet
distribution.

Some general problems with observed-to-expected ratios should be kept in mind. Observed-
to-expected ratios are relevant strength of association measures primarily for events with low
expected frequencies where there is virtually no upper limit to the observed-to-expected ratios.
In contrast, if the overall frequency of a certain ADR term is as high as, for example, 0.5, the
observed-to-expected ratio for its association with a given drug substance can never exceed 2
– even if that ADR term occurs on every report for that drug substance. As a consequence,
comparisons between IC values can potentially be misleading if the expected frequencies vary
significantly in magnitude. Another problem with observed-to-expected ratios is that there may
be a spill-over effect from a large observed number of reports for an event pair to the expected
number of reports for that event pair. Specifically, if the drug substance under study is very
common and there are unexpectedly many reports on this drug substance with a particular
ADR, this may influence the overall prevalence of that ADR term so much that the strength
of association is underestimated by the observed-to-expected ratio. These two problems rarely
affect pairwise IC analysis between drug substances and ADR terms in standard drug safety
data sets much, but may be important in the analysis of other types of events or of smaller
data sets. To minimise the risk for misleading results, it may in some situations be sensible to
accompany the estimated IC values for highlighted associations with standard log-odds ratios.

2.1. The moderating prior distribution

The aim of IC analysis is to generate useful leads with respect to quantitative associations
in a data set. As previously discussed, it is in this context crucial to avoid the highlighting
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EXTENDING THE METHODS USED TO SCREEN THE WHO DRUG SAFETY DATABASE 5

of an abundance of associations with weak support in data, but at the same time focusing on
estimated strength of association. With respect to this issue, Bayesian dependency derivation
based on a conservative prior distribution has proven instrumental in moderating the estimated
strengths of association when data is scarce [7, 9]. The Bayesian moderation in combination
with the use of credibility intervals provides an efficient, pragmatic compromise between
methods based on statistical significance only (that may be sensitive to weak associations
with large data support) and methods based on raw observed-to-expected ratios (that tend to
highlight associations with very little data support). Since the impact of the prior distribution
diminishes as data accumulates, for combinations with large support there is little difference
between Bayesian and classical estimates.

To ascertain moderation of the posterior distribution toward the baseline assumption of
independence (IC = 0) for all possible associations in all possible data sets, assume a
Di(α11, α10, α01, α00) prior distribution for p11, p10, p01 and p00 where:

α11 = q1·q·1 · α··

α10 = q1·q·0 · α··

α01 = q0·q·1 · α··

α00 = q0·q·0 · α·· (3)

and:

α·· =
0.5

q1·q·1
(4)

and:

q1· =
n1· + 1/2

n·· + 1

q0· =
n0· + 1/2

n·· + 1

q·1 =
n·1 + 1/2

n·· + 1

q·0 =
n·0 + 1/2

n·· + 1
(5)

This prior distribution incorporates the independence assumption by setting the hyper
parameters proportional to the products of the corresponding marginal probabilities (in fact to
posterior mean estimates for the marginal probabilities based on Be(1/2, 1/2) hyper priors).
The benefit of this is that the ICmap always lies between 0 and the raw observed-to-expected
log-ratio and that:

lim
n1·,n·1→0

ICmap ≈ 0

lim
n··→0

ICmap = 0 (6)

which is important for computational stability.
In the abstract sense mentioned above, the moderating prior distribution is equivalent to an

assumed extra batch of data where the two events under study are independent, co-occur 0.5
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a. Posterior mean estimate b. Maximum à posteriori estimate

Figure 1. Errors in posterior mean and maximum à posteriori estimates for the IC distribution. This
figure shows deviations from the Monte Carlo simulated values of estimates based on (7) for the mean
and the mode, respectively. 1,000 randomly selected drug-ADR pairs in the WHO database were used

and each Monte Carlo simulation was based on 50,000 draws.

times and where the marginal probabilities for the two events are approximately the same as
in the real data set. With this approach, the prior sample size α·· may vary, but α11 always
equals 0.5 and since it is primarily α11 that determines the shape of the IC distribution [27],
the shape of the prior distribution will be approximately the same for all associations under
study.

This prior distribution is based on the same principles as the prior previously used in IC
analysis (see [7] or [8]). The major differences are that the new prior is based on the joint
Dirichlet distribution for the model parameters (instead of independent beta distributions)
and that the prior sample size has been halved. The reduction in prior sample size yields a
more diffuse prior distribution that better reflects our initial uncertainty about the IC values
in the WHO database. For data sets with different characteristics (size, sparsity, heterogeneity)
than the WHO database, the factor 0.5 in the expression for α·· should be adjusted. It may,
for example, be sensible to reduce this factor (and thus the moderating effect of the prior
distribution) for smaller data sets.

2.2. Central IC estimates

Arbitrarily accurate estimates for the posterior mean (p.m.e.) of the IC distribution are
available [29]. However, as the IC distribution is generally unimodal, maximum á posteriori
(m.a.p.) estimates may be used for central estimates instead. The main advantage of the m.a.p.
estimate is that it is well suited for use in stratified IC analysis (see Section 2.4) and that
it has the intuitive property of being equal 0 when the estimated joint probability equals the
product of the estimated marginal probabilities. In addition, the concept of a most likely value
for an unknown parameter is perhaps more natural than that of an expected value, and this
is an important aspect in the drug safety application, where the results must be interpretable
for non-statisticians.
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EXTENDING THE METHODS USED TO SCREEN THE WHO DRUG SAFETY DATABASE 7

n11 = 1 n11 = 2 n11 = 3 n11 = 4 n11 = 5
ICpme 0.53 0.30 0.21 0.16 0.13
ICmap 0.04 0.02 0.01 0.01 0.01

Table I. Average error for (7) as estimate of the IC mean and mode, respectively, at different values
for the joint count n11.

We propose the the following m.a.p. estimate:

ICmap ≈ log2

E[p11]

E[p1·]E[p·1]
(7)

The same expression has been used earlier as a crude estimate for the IC mean [7, 8]. To study
the accuracy of this expression as an estimate for on one hand the mean and on the other hand
the mode of the IC distribution, estimated values were compared to Monte Carlo simulated
values based on 50,000 draws from each posterior IC distribution (the mode of the simulated
IC distributions was estimated based on the empirical relationship mode ≈ 3·median−2·mean

for unimodal curves of moderate asymmetry [30]). A random subset of 1,000 drug-ADR
combinations that occur in the WHO database were used for evaluation. Throughout, the
moderating prior distribution described in Section 2.1 was used. The results are displayed in
Figure 1. Clearly, (7) is a better estimate of the mode than of the mean.

2.3. Improved IC credibility interval estimates

Denote by IC025, the 2.5 percentile of the posterior IC distribution. This is the lower limit of
a two-sided 95% credibility interval for the IC, by which associations are typically ranked in
IC analysis [7, 8]. The use of a lower credibility interval limit accounts for uncertainty in a
conservative manner. The idea is to choose an estimate so that the true value is greater than
the estimate with a given degree of certainty (here 97.5%). Together with the moderating prior
distribution (see Section 2.1) this helps to reduce the number of false leads generated by IC
analysis.

The IC credibility interval estimates were previously based on a normal approximation for
the IC distribution [7, 8]. Monte Carlo experiments indicate that while the IC distribution
tends to a normal distribution asymptotically (for large n11), the assumption leads to a rather
crude approximation for rare pairs of events (n11 ≤ 10). Since more than 80% of the observed
drug-ADR pairs in the WHO database fall into this critical category, the need for improvement
is clear [27]. The use of brute force Monte Carlo simulation to estimate the posterior percentiles
would give arbitrarily accurate estimates, but at too high a cost in computational complexity.
Instead, we propose an approach based on an approximate formula for the difference between
the mode and the lower credibility interval limit for the IC distribution.

Let ∆025 denote the true difference between ICmap and IC025. Given estimates for ICmap

and ∆025, IC025 can be estimated as follows:

ˆIC025 = ˆICmap − ∆̂025 (8)

Empirical testing suggests that functions of the following general form model ∆025 well (Ar

and Br are fitted parameters):

∆025(γ11) = Ar · γ
−1/2
11 + Br · γ

−3/2
11 (9)
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a. Normal approximation b. Proposed approximation

Figure 2. Errors in IC025 estimates. This figure shows deviations from Monte Carlo simulated values
of the two IC025 estimates for 1,000 randomly selected drug-ADR pairs in the WHO database. 50,000

draws were used in each Monte Carlo simulation.

n11 = 1 n11 = 2 n11 = 3 n11 = 4 n11 = 5
Normal approximation 1.47 0.78 0.52 0.38 0.31

Proposed approximation 0.06 0.07 0.06 0.04 0.04

Table II. Average error in the IC025 estimates for different values of the joint count n11 among the
1,000 drug-ADR pairs from the WHO database.

In particular:

lim
γ11→∞

∆025(γ11) = 0 (10)

and because there are only 2 fitted parameters, there is little risk for over-fitting.
By using different parameters Ar and Br for different ratios r = γ11/ min(γ1·, γ·1), the

impact of the smaller of the two marginal parameters may be accounted for. We have estimated
constants Ar and Br for 11 different values of r (0.0, 0.1, . . . , 1.0), and use linear interpolation
in between. Thus, for a given ratio r, the value of ∆025 is estimated by the weighted average
of the ∆025 values for the two closest values of r for which there are fitted constants Ar and
Br available. For details about fitting the parameters in (9) and their values for different r,
see Appendix I.1.

To evaluate the accuracy of the proposed approach to estimate IC025, we compared Monte
Carlo simulated values based on 50,000 draws to the estimated values, for the same data set
as in Section 2.2. For comparison, the accuracy of the normal approximation [7, 8] was also
evaluated. The results are displayed in Figure 2. Clearly, the proposed approximation is more
accurate.

2.4. Stratified IC analysis

Although the purpose of dependency derivation is hypothesis generation, and a certain number
of false leads is acceptable in this context, it is important to keep the proportion of false
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EXTENDING THE METHODS USED TO SCREEN THE WHO DRUG SAFETY DATABASE 9

leads at a minimum. One approach to improving the specificity is to detect and control for
potential confounders. As for other epidemiological applications, adjusted overall estimates
may be quoted when there is no suspicion of effect modification, otherwise stratum specific
estimates should be used [31]. There are at least two different ways to adjust the IC for
potential confounders.

The most obvious adjusted IC estimate is a weighted average of the stratum specific IC
values as previously suggested [32]. However, this approach requires a careful selection of
stratification variables, because it is particularly sensitive to data thinning. Strata with few
or no observations of the event combination of interest will yield unreliable stratum specific
IC estimates, and since the weights in calculating the pooled estimate are not necessarily
correlated to the reliability of the estimates, this may lead to an unreliable adjusted IC
estimate. Indeed, tentative experiments based on Monte Carlo simulation indicate that this
approach to adjusting the IC typically leads to wider credibility intervals than for the
unadjusted IC, which, in addition to the loss in precision, is a technical disadvantage since it
makes more difficult the derivation of accurate credibility intervals.

An alternative approach to calculating pooled IC estimates is to use a Mantel-Haenszel type
of adjustment where the denominator in the ICmap formula is equal to the weighted average
of the expected joint probabilities in the different strata:

ICmap ≈ log2

E[p11]∑n
k=1 E[p1·|k]E[p·1|k] · E[p··k]

(11)

For this adjustment of the IC value, the moderating prior distribution may be used for both
the numerator and for each term in the denominator. Since the numerator is not affected by
the adjustment, it seems likely that the spread for the pooled IC should be the same as that
for the unadjusted IC, and empirical testing supports this assumption. This indicates that the
approximate credibility intervals proposed in Section 2.3 may be used for the adjusted IC025

as well.
As an illustration of the general usefulness of stratified IC analysis, we have investigated

the association in the WHO database between the terms sudden infant death syndrome and
Polio virus vaccine live oral. The unadjusted ICmap estimate for this association is 4.78 and
the corresponding IC025 estimate is 4.63. However, since the Polio virus vaccine is typically
given to small children and only small children suffer from SIDS (the sudden infant death
syndrome), this is likely to be confounded by age [9].

There are 7 predefined age groups in the WHO database: unspecified, 0 - 1 month, 2 months

- 4 years, 5 - 11 years, 12 - 16 years, 17 - 69 years and 70+ years. Table III displays stratum
specific IC values for the association between SIDS and the Polio virus vaccine for these age
groups. Based on this stratification, the adjusted ICmap estimate according to (11), is 1.19
and the corresponding IC025 estimate is 1.00. Clearly the stratification by age reduces the
apparent strength of association. At the same time, the relatively strong association between
SIDS and the Polio virus vaccine in the age: unspecified stratum renders dubious the listing
of any overall IC estimate (adjusted or not). In this situation, a list of stratum specific IC
values is probably a more appropriate output. Please note that a proper examination of this
quantitative association would require the consideration of other potential confounders as well.

Some problems with routine stratification by a limited set of predefined variables have been
pointed out previously [33]. For the WHO database, we use association specific stratification
in the post-processing of clinically interesting drug-ADR pairs.

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–18
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10 G. N. NORÉN, A. BATE, R. ORRE AND I. R. EDWARDS

Stratum npolio,sids npolio· n·sids n·· ICpolio,sids

unspecified 25 1126 87 572573 5.25 (4.64)
0 - 1 month 29 1408 79 9066 1.21 (0.73)

2 months - 4 years 203 30068 508 155209 1.04 (0.87)
5 - 11 years 0 5232 3 80140 -0.48 (-11.10)
12 - 16 years 0 299 0 63911 0.00 (-10.65)
17 - 69 years 0 461 13 1669422 -0.01 (-10.67)
70+ years 0 10 0 453481 0.00 (-10.66)

Table III. Stratum specific IC values for the association between SIDS and the Polio virus vaccine
in different age groups. The numbers listed in the rightmost column are ICmap estimates with the

moderating prior (IC025 estimates in brackets).

IC025 Old + Old -
New + 80363 616
New - 3532 522707

Table IV. A cross-classification of the observed drug-ADR pairs in the WHO database, with respect
to the signs of the IC025 values for the two methods.

2.5. Example: a scan for drug-ADR associations in the WHO database

To study in practise, the impact of the proposed changes to IC analysis (new prior distribution
and improved credibility interval estimates). We have carried out a complete scan of the WHO
database (as of quarter 3, 2003) with both methods.

Table IV displays a cross-classification of all observed drug-ADR pairs in the WHO database
with respect to whether the IC025 values are positive or negative (this is the threshold used in
routine screening of the WHO ADR database) with the old and the new approach respectively.
Clearly, the agreement between the two approaches is quite good: with respect to this threshold,
the two methods differ for only around 4,000 out of the close to 600,000 observed drug-
ADR pairs and Cohen’s kappa measure is 0.97 (a Cohen’s kappa of 1 would indicate perfect
agreement). Where the two methods differ, the new approach seems to be somewhat more
conservative, but there are event pairs for which the new but not the old IC025 estimate
exceeds 0. These tend to have low joint counts n11 (ranging from 3 to 12) and low marginal
counts n1· for the drug (ranging from 3 to 68 in all but three cases, for which the values are
significantly higher). In particular, the new approach alone highlights 84 event pairs where
there is 3 reports in total for the drug – all on the same reaction. Because these event pairs
may correspond to important problems for recently marketed drugs, it is a strength from a
monitoring perspective that the new approach highlights them.

2.6. Example: a captopril-coughing time scan

To further examine the practical impact of the proposed changes to IC analysis, we studied
the evolution in time of the IC between the drug substance captopril and the ADR term
coughing with the two approaches. The association between captopril and coughing has been
well known since 1986, but earlier work has shown that if IC analysis had been in use at the
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Figure 3. The evolution over time of the IC between captopril and coughing, with the old and the
new approach. Central estimates together with 95% credibility intervals are marked in the plot.

time a quantitative association between captopril and coughing would have been highlighted
already in 1981 [7]. We were interested to see whether the proposed changes to IC analysis
would delay or expedite the highlighting of this quantitative association in the database.

Figure 3 displays the change over time for the IC central estimates (together with 95%
credibility interval estimates) for the captopril-coughing quantitative association, based on
the old and new IC analysis approaches. The credibility interval estimates differ when the
joint count is low, but the association would be highlighted in the same quarter regardless of
which approach was used.

3. IC analysis for higher order dependency derivation

The IC as defined in Section 2 is a strength of association measure for pairs of events only,
but there is often an interest in higher order associations. In the drug safety application, this
may include drug-drug interactions or three way associations involving a drug substance, an
ADR term and another risk factor (e.g. age or gender). Generally, a higher order strength of
association measure should capture disproportionality in the occurrence of groups of events in
the data set, which is not explicable by lower order associations. For three way associations, we
would be interested in sets of three events that occur unexpectedly often even when pairwise
associations between the events are accounted for.

The usefulness of extending the IC value to higher order associations is not necessarily
limited to the dependency derivation application. Higher order IC values could be introduced
in both the feedforward and the recurrent BCPNN in order to improve performance in
classification and unsupervised pattern recognition, respectively.

An extension of the IC to third order associations was previously proposed in [8], but this
did not compensate for pairwise associations. We, instead, propose the following definition of
the third order IC:

ICxyz = ICxy|z − ICxy (12)
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where:

ICxy|z = log2

P (x, y | z)

P (x | z)P (y | z)
(13)

The logic behind this definition of the third order IC is that if there is a positive third order
association, the presence of the third event should make the pairwise association between the
other two events stronger (i.e. ICxy|z should exceed ICxy etc). Conversely, if there is a negative
third order associations, the presence of the third event should make the pairwise association
between the other two events weaker.

It is easy to show that this definition is symmetric in x, y and z:

ICxyz = ICxy|z − ICxy =

= ICxz|y − ICxz =

= ICyz|x − ICyz (14)

since with simple algebraic operations, we can re-express ICxyz as:

ICxyz = log2

P (y, z | x)

P (y | x)P (z | x)
− log2

P (y)P (z)

P (y, z)
=

= log2

P (x, y, z)P (x)P (y)P (z)

P (x, y)P (x, z)P (y, z)
(15)

The third order IC can be seen as an observed-to-expected ratio, where the expected value
accounts for both main effects and pairwise interactions. To see this, let:

Wx1...xn
=

P (x1, . . . , xn)

P (x1) · . . . · P (xn)

Then the third order ICxyz may be re-expressed as:

ICxyz = log2

P (x, y, z)

P (x)P (y)P (z)WxyWxzWyz
(16)

which is an approximate observed to expected ratio accounting for pairwise associations as
well as marginal probabilities.

The generalisation of the IC to even higher orders is straightforward. For example, the
fourth order IC can be defined as follows:

ICxyzv = ICxyz|v − ICxyz = ICxyv|z − ICxyv =

= ICxvz|y − ICxvz = ICyzv|x − ICyzv (17)

which gives:

ICxyzv = . . . = log2

P (x, y, z, v)

P (x)P (y)P (z)WxyWxzWxvWyzWyvWzvWxyzWxyvWxzvWyzv
(18)

As desired, the approximate expected joint probability in the denominator accounts for both
second and third order associations in addition to the marginal probabilities.

Most of the theory developed in Section 2 for pairwise IC values holds approximately for
higher order IC values. A third order IC m.a.p. estimate similar to that for pairwise IC is:

ICmap ≈ log2

E[p111]E[p1··]E[p·1·]E[p··1]

E[p11·]E[p1·1]E[p·11]
(19)
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nxyz nxy· nx·z n·yz nx·· n·y· n··z n··· ICxyz

Drug: ketoconazole 5 63 27 11 6083 3695 5071 3176114 2.32 (1.08)
Age: 17-69 years 52 63 3764 2046 6083 3695 1756414 3176114 0.41 (0.20)
Gender: female 38 63 3427 1607 6083 3695 1753445 3176114 0.43 (0.09)
Country: USA 45 63 2718 2342 6083 3695 1478959 3176114 0.26 (-0.05)

Country: Germany 8 63 174 469 6083 3695 195102 3176114 0.94 (-0.18)

Table V. The top 5 third order IC values with terfenadine and ventricular fibrillation. The numbers
listed are m.a.p. estimates with the moderating prior distribution (IC025 estimates in brackets).

Credibility intervals for third order IC values may be calculated with the formula proposed in
Section 2.3 if, in the definition of r, min(γ1·, γ·1) is replaced by min(γ1··, γ·1·, γ··1). Adjustment
of higher order IC values to control for confounders is also possible. For third order IC values,
the Mantel-Haenszel adjusted m.a.p. estimate is:

ICmap ≈ log2

E[p111]
∑n

k=1
E[p11·|k ]E[p1·1|k ]E[p·11|k]

E[p1··|k ]E[p·1·|k]E[p··1|k] · E[p··k]
(20)

Furthermore, it is straightforward to generalise the moderating prior distribution described in
Section 2.1 to higher order IC values (see Appendix I.2).

3.1. Example: A risk factors scan

Higher order IC analysis may be used to search for factors that influence the risk of a certain
ADR given a particular drug. If, for example, the third order IC between a certain drug
substance x, a certain ADR term y and a certain age group z were positive, this may indicate
that patients of age group z are more prone to experiencing x-induced y than the population in
general. Routine scans for third order IC values between a drug substance, an ADR term and
some other factor (e.g. a certain gender or an age groups) may therefore be used to generate
hypotheses with respect to potential high risk groups of patients. Positive higher order IC
values may also be indicative of confounding, but for confounders, further investigation will
show no significant variation in the IC values over the different strata.

Terfenadine was withdrawn due to concerns about its cardiotoxicity. Additionally,
terfenadine and ketoconazole are known to interact so that the risk of heart problems is higher
when the two are co-administered. Indeed, there are 5 reports on terfenadine, ketoconazole
and ventricular fibrillation in the WHO database and the corresponding third order IC value
is 2.32 with a lower credibility interval limit of 1.08. If we were to examine all three way
associations between terfenadine and ventricular fibrillation and other events related to age,
country, gender or other medication, there are 27 other events that occur at least once together
with terfenadine and ventricular fibrillation on reports in the data set. Out of these, only 2
events other than the co-administration of ketoconazole have positive third order IC025 values
with terfenadine and ventricular fibrillation (see Table V for the top 5 associations with respect
to IC025 values). Based on this analysis, ketoconazole is clearly the most influential risk factor
for this association.
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4. Discussion

The analysis of spontaneous reporting data remains the cornerstone of post-marketing drug
safety surveillance. Despite problems with data heterogeneity, it is the most important
source of information for discovering previously unknown adverse effects from drugs after
they are introduced on the market. IC analysis has proven to be an efficient method for
exploratory quantitative analysis of post-marketing drug safety data [15] that while meeting
the computational requirements also provides sophisticated protection against spurious
associations. However, IC analysis as originally implemented [7, 8] is based on large sample
approximations, and despite the large total number of reports in the WHO drug safety database
the number of reports on a given drug-ADR pair is typically small (due to the large number
of drug substances and ADR terms involved). Thus there is a clear need for the improved
credibility intervals proposed in this article, and the results presented in Section 2.3 indicate
that they do lead to improved accuracy and may allow for earlier discovery of problems related
to recently marketed drug substances. These results are based on randomly selected drug-ADR
pairs from the WHO database, but we expect the conclusions to hold generally for rare events
in large and sparse data sets.

The Mantel-Haenszel adjustment for the IC proposed in Section 2.4 is important in that it
will allow for robust exploratory data analysis in the presence of confounding. However, more
research is needed to specify efficient strategies for how and when to carry out stratified
analyses of spontaneous reporting data. It is, at present time, unclear whether routine
adjustment by set of pre-defined variables for all event pairs in the database is to be preferred
over unadjusted estimates in the initial screening of the database [33]. If higher order IC
analysis or other sophisticated pattern recognition methods could be used for automated
confounder detection, this may allow for data driven association specific adjustment by
suspected confounders, and we aim to investigate this further in the future. The strong
association between SIDS and the Polio vaccine in the age unspecified stratum of the WHO
ADR database (see Section 2.4) is likely to be due to residual confounding and emphasises the
problem of missing data for the stratification variables. This issue too needs to be resolved
before optimal use of stratified dependency derivation is possible.

While the quantitative improvements for pairwise IC analysis proposed in Section 2
are refinements of the existing methodology, the generalisation to higher order associations
in Section 3 allows for altogether new types of analysis related to complex quantitative
associations. In combination with our methods for unsupervised pattern recognition [25], the
methods presented in this article provide a comprehensive range of techniques for efficient
knowledge discovery in spontaneous reporting data. An alternative approach to studying higher
order associations would be to fit a generalised linear model with interaction terms, and in
a similar spirit, other groups have proposed observed-to-expected ratios where the expected
frequency is calculated based on a fitted log-linear model [10]. The advantage of higher order
IC analysis in this context is that it is more direct (it does not require iterative methods for
fitting) and allows for local analysis (in the sense that the higher order IC value for a certain
set of events is only influenced by the joint and marginal counts for that specific set of events).
Drug-drug interaction detection is a type of higher order association which is particularly
important in the quantitative analysis of spontaneous reporting data and several approaches
have been proposed [34, 35, 10]. In theory there is no obvious reason why higher order IC
analysis could not be used to screen for drug interactions as well as any other risk factors,
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but there has recently been a tendency to focus on more simple methods for the detection of
drug-drug interactions [36], which indicates that more research into the basic characteristics of
drug-drug interactions spontaneous reporting may be needed to resolve this issue successfully.

5. Conclusions

Earlier, IC analysis has proven useful in hypothesis generation with respect to quantitative
associations in large drug safety data sets. In this article we have proposed improved methods
for posterior inference in IC analysis, including an accurate estimate for the mode and
significantly improved credibility interval estimates. In addition, we have extended the IC
strength of association measure to higher order associations and illustrated the usefulness of
this on real world data. An adjustment of the IC to control for potential confounders has also
been described and applied to real world data.
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APPENDIX

I.1. ∆025 parameter fitting

Constants Ar and Br for 11 different values of r (0.0, 0.1, . . . , 0.9, 1.0) were fitted to Equation 9
based on simulated ∆025 values where γ11 ranged from 1 to 100, γ1· = γ11/r, γ·1 = 100, 000 and
γ·· = 10, 000, 000. Each simulated ∆025 value was based on 100 000 Monte Carlo draws from
the posterior IC distribution of interest. Table VI displays the fitted constants for different
values of r (in the parameter fitting, r = 0 was approximated by r = 0.001 and r = 1 was
approximated by r = 0.999 for computational stability).

r Ar Br

0.0 3.09 2.22
0.1 2.93 2.27
0.2 2.78 2.26
0.3 2.62 2.25
0.4 2.45 2.15
0.5 2.25 2.12
0.6 2.03 2.05
0.7 1.79 1.93
0.8 1.61 1.89
0.9 1.13 1.15
1.0 0.073 -0.081

Table VI. Fitted parameters for the ∆025 function for different values of r

I.2. Moderating prior for the third order IC

The hyper parameters of the moderating prior for third order IC values is:

α111 =
q11·q1·1q·11
q1··q·1·q··1

· α··· α011 =
q01·q0·1q·11
q0··q·1·q··1

· α···

α110 =
q11·q1·0q·10
q1··q·1·q··0

· α··· α010 =
q01·q0·0q·10
q0··q·1·q··0

· α···

α101 =
q10·q1·1q·01
q1··q·0·q··1

· α··· α001 =
q00·q0·1q·01
q0··q·0·q··1

· α···

α100 =
q10·q1·0q·00
q1··q·0·q··0

· α··· α000 =
q00·q0·0q·00
q0··q·0·q··0

· α··· (21)

where:

α··· = 0.5 ·
q1··q·1·q··1
q11·q1·1q·11

(22)
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and:

q1·· =
n1·· + 1/2

n·· + 1
q11· =

n11· + 1/4

n·· + 1
q0·1 =

n0·1 + 1/4

n·· + 1

q0·· =
n0·· + 1/2

n·· + 1
q10· =

n10· + 1/4

n·· + 1
q0·0 =

n0·0 + 1/4

n·· + 1

q·1· =
n·1· + 1/2

n·· + 1
q01· =

n01· + 1/4

n·· + 1
q·11 =

n·11 + 1/4

n·· + 1

q·0· =
n·0· + 1/2

n·· + 1
q00· =

n00· + 1/4

n·· + 1
q·10 =

n·10 + 1/4

n·· + 1

q··1 =
n··1 + 1/2

n·· + 1
q1·1 =

n1·1 + 1/4

n·· + 1
q·01 =

n·01 + 1/4

n·· + 1

q··0 =
n··0 + 1/2

n·· + 1
q1·0 =

n1·0 + 1/4

n·· + 1
q·00 =

n·00 + 1/4

n·· + 1
(23)
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